\qquad

Higher Unit 13 topic test

Date:

Time: 55 minutes
Total marks available: 46
Total marks achieved: \qquad

Questions

Q1.
$A B C$ is an isosceles triangle.

Work out the area of the triangle.
Give your answer correct to 3 significant figures.
cm^{2}

Q2.

The diagram shows a sketch of the graph of $y=\cos x^{\circ}$

Write down the coordinates of the point A.

Q3.

The diagram shows part of a sketch of the curve $y=\sin x^{\circ}$.

(a) Write down the coordinates of the point P.
\qquad
(b) Write down the coordinates of the point Q.

Q4.

Here is the graph of $y=\sin x^{\circ}$ for $-180 \leq x \leq 180$

On the grid above, sketch the graph of $y=\sin x^{\circ}+2$ for $-180 \leq x \leq 180$
(Total for question is $\mathbf{2}$ marks)

Q5.

Diagram NOT accurately drawn
$A B C$ is a triangle.
$A B=8.7 \mathrm{~cm}$.
Angle $A B C=49^{\circ}$.
Angle $A C B=64^{\circ}$.
Calculate the area of triangle $A B C$.
Give your answer correct to 3 significant figures.

Q6.

$A B C$ is a triangle.
D is a point on $A C$.
Angle $B A D=45^{\circ}$
Angle $A D B=80^{\circ}$
$A B=7.4 \mathrm{~cm}$
$D C=5.8 \mathrm{~cm}$
Work out the length of $B C$.
Give your answer correct to 3 significant figures.

Q7.
The diagram shows triangle LMN.

Calculate the length of $L N$.
Give your answer correct to 3 significant figures.

Q8.
$A B C D$ is a quadrilateral.

Diagram NOT accurately drawn

Work out the length of $D C$.
Give your answer correct to 3 significant figures.

Q9.

In triangle $R P Q$,
$R P=8.7 \mathrm{~cm}$
$P Q=5.2 \mathrm{~cm}$
Angle $P R Q=32^{\circ}$
(a) Assuming that angle $P Q R$ is an acute angle, calculate the area of triangle $R P Q$.
Give your answer correct to 3 significant figures.
(b) If you did not know that angle $P Q R$ is an acute angle, what effect would this have on your calculation of the area of triangle $R P Q$?
\qquad
\qquad
\qquad

Q10.

Jerry wants to cover a triangular field, $A B C$, with fertiliser.

Diagram NOT
accurately drawn

Here are the measurements Jerry makes
angle $A B C=50^{\circ}$ correct to the nearest degree,
$B A=225 \mathrm{~m}$ correct to the nearest 5 m ,
$B C=175 \mathrm{~m}$ correct to the nearest 5 m .
Work out the upper bound for the area of the field.
You must show your working.

Q11.

* The diagram shows the triangle $P Q R$.

Diagram NOT accurately drawn
$P Q=x \mathrm{~cm}$
$P R=2 x \mathrm{~cm}$
Angle $Q P R=30^{\circ}$
The area of triangle $P Q R=A \mathrm{~cm}^{2}$
Show that $x=\sqrt{2 A}$

Q12.
$V A B C D$ is a solid pyramid.

$A B C D$ is a square of side 20 cm .
The angle between any sloping edge and the plane $A B C D$ is 55°
Calculate the surface area of the pyramid.
Give your answer correct to 2 significant figures.
. cm^{2}

Examiner's Report

Q1.

This was the first question on the paper that was poorly attempted. The preferred route taken by candidates was to find either AB or AC, which was nearly always correctly done. Most of these candidates then went on to substitute their values into $1 / 2 \mathrm{abSinC}$ with just a few using the wrong value for the included angle. A few candidates, having found the slant height, used it as the perpendicular height of the triangle when calculating the area using $1 / 2 \mathrm{~b} \times \mathrm{h}$, resulting in the loss of marks. It was rare to see the triangle split into two right angled triangles and tan54 used to find the height, though those who chose this route usually did it well.

Q2.

This question proved to be a good discriminator between the most able candidates. In part (a) the most commonly seen incorrect answers seen included (1,0) and (0,90).

Q3.
The first two parts of the question were basically about how well candidates knew their trigonometric curves. The response was very poor with very few being able to give the correct coordinates. Surprisingly for this target level, there were candidates who gave the correct values, but reversed - for example (0 , $180)$ instead of the correct $(180,0)$

Q4.

There were a few good answers to part (a) and some further students managed to score 1 mark for a reasonably convincing translation parallel to the y-axis.

Q5.

This question was often omitted and it was generally not well done by those who did attempt it. A number of candidates treated the triangle as right angled and used cos/sin/tan to find one of the sides. Those who used the sine rule were mostly able to find at least one side successfully. Many candidates found both missing sides which was unnecessary. Most knew that they had to use $1 / 2 a b s i n C$ for the area but sometimes did not use the angle included by their two sides.

Q6.

From this point on, a significant number of students failed to attempt these later questions in the paper. In this question many incorrectly assumed ABC was 90° and tried to use Pythagoras. Some tried to use Sine Rule but frequently substituted incorrect values; few considered the need to use Cosine Rule.

Q7.
Many candidates started off by using the Cosine Rule with the angle 136 or basic trigonometry, but alone this would not have led to a complete solution. It was rare to find Cosine Rule being used correctly as a first stage. In some cases a start using the Sine Rule was not developed, as a significant number of candidates did not know what to do with it once they had substituted the numbers. Those who did so successfully usually went on to use Cosine Rule or Sine Rule again to complete the solution. Premature rounding spoilt many solutions.

Q8.

There were some who did not understand the topic and associated this question with Pythagoras and right-angled trigonometry. The majority deduced Cosine rule was needed and correctly substituted in their values. In many cases the order of operations in Cosine Rule was flawed, resulting in an incorrect length for DB. Many then went on to use Sine Rule, with greater success and sound method shown resulted in additional marks.

Q9.
No Examiner's Report available for this question

Q10.

Seeing the correct bounds was rare and 225.5 and 175.5 or 230 and 180 were often seen as the upper bounds of $B A$ and $B C$ respectively. Many students however earned the first mark for a correct upper bound for the angle.

Use of $1 / 2$ absin C was good, however it was not uncommon to see the students' upper bounds for $B A$ and $B C$ and then $\sin 50^{\circ}$ used.

Q11.

The majority of candidates who realised that they had to use $1 / 2 a b \sin C$ for the area of the triangle often substituted the given lengths and angle correctly but then could not progress any further. Some good fully correct proofs were seen but a very few candidates were unable to gain full marks because their calculators were clearly set in radian or gradian rather than degree mode.

Q12.

No Examiner's Report available for this question

Mark Scheme

Q1.

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
		49.5	4	M1 for $\tan 54=\frac{\text { height }}{6}$ M1 for (height $=$) $6 \times \tan 54(=8.2-8.3)$ M1 for $\frac{1}{2} \times{ }^{\prime} 8.258 \ldots$.. $\times 12$ A1 for 49.2-50 OR M1 for $\cos 54=\frac{6}{A C}$ M1 for $(A C=) \frac{6}{\cos 54}(=10.2(07 \ldots))$ M1 for $\frac{1}{2} \times 12 \times 10.207^{\prime} \times \sin 54$ A1 for 49.2-50 OR M1 for $\frac{A C}{\sin 54}=\frac{12}{\sin 72}$ M1 for $(A C=) \frac{12}{\sin 72} \times \sin 54(=10.2(07 \ldots))$ M1 for $\frac{1}{2} \times 12 \times 10.207^{\prime} \times \sin 54$ A1 for $49.2-50$

Q2. (part (a) only)

		Working	Answer	Mark	Notes
	(a)		$(90,0)$ (b)		1
Correct graph	1	B1 for $(90,0)$ (condone $(\pi / 2,0))$ B1 for graph through $(0,2)(90,0)(180$, $-2)(270,0)(360,2)$ professional judgement			

Q3. (parts (a) and (b) only)

PAPER: 1MA0_1H

Question		Working	Answer	Mark	Notes
	(a)		180,0	1	B1 for 180,0 Accept $\pi, 0$
	(b)		$270,-1$	1	B1 for $270,-1$ accept $\frac{3 \pi}{2},-1$
				B1 cao	
				B1 cao	
B1 cao					

Q4. (part (a) only)

| Question | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :---: | :---: | :--- |
| (a) | | Graph drawn | 2 | B2 correct graph drawn
 (B1 for a graph translated up/down) |
| (b) | | Graph drawn | 2 | B2 for correct graph drawn
 (B1 for a graph reflected in the x axis or stretched
 by sf 2 parallel to the y axis) |

Q5.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & A C / \sin 49=8.7 / \sin 64 \\ & A C=8.7 / \sin 64 \times \sin 49 \\ & (=7.305 \ldots) \\ & 1 / 2 \times 8.7 \times 7.305 \ldots \times \sin \\ & (180-64-49) \end{aligned}$	29.3	5	M1 for $A C / \sin 49=8.7 / \sin 640 \mathrm{ee}$ M1 for $(A C=)^{8.7} / \sin 64 \times \sin 49$ A1 for 7.3(05...) M1 for $1 / 2 \times 8.7 \times{ }^{\prime} 7.305^{\prime} \times \sin (180$ -64-49) A1 for 29.19 - 29.3 OR M1 for $\frac{B C}{\sin (180-64-49)}=$ $8.7 / \sin 64$ oe M1 for $(B C=)^{8.7} / \sin 64 \times \sin { }^{\prime} 67^{\prime}$ A1 for 8.9(10...) M1 for $1 / 2 \times 8.7 \times 18.910^{\prime} \times \sin 49$ A1 for 29.19-29.3 OR (X is point such that $A X$ is perpendicular to $B C$) M1 for $A X=8.7 \times \sin 49(=6.565 \ldots)$ or $X B=8.7 \times \cos 49(=5.707 \ldots)$ M1 for $X B=8.7 \times \cos 49(=$ 5.707...) and $C X=$ '6.565' $\div \tan 64$ oe (= 3.202...) A1 for 8.9(10...) or 5.7(07...) and 3.2(02...) M1 for $1 / 2 \times$ '6.565 ...' $\times\left({ }^{\prime} 5.707^{\prime}+\right.$ '3.202') oe A1 for 29.19-29.3

Q6.

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
		8.52	5	M1 for $\frac{B D}{\sin 45}=\frac{7.4}{\sin 80}$ oe M1 for $(B D=) \frac{7.4}{\sin 80} \times \sin 45(=5.3133 .$. M1 for $5.8^{2}+{ }^{\prime} 5.31^{\prime 2}-2 \times 5.8 \times{ }^{\prime} 5.31^{\prime} \cos 100$ M1 (dep) for correct order of evaluation or 72.5 (73...) A1 for $8.51-8.52$ OR M1 for $\frac{A D}{\sin (180-80-45)}=\frac{7.4}{\sin 80}$ oe M1 for $(A D=) \frac{7.4}{\sin 80} \times \sin (180-80-45)(=6.15 \ldots)$ M1 for $7.4^{2}+\left({ }^{(} 6.15^{\prime}+5.8\right)^{2}-2 \times 7.4 \times\left({ }^{*} 6.15^{\prime}+5.8\right) \times \cos 45$ M1 (dep) for correct order of evaluation or $72.5(7398 \ldots$...) A1 for $8.51-8.52$

Q7.

PAPER: 1MA0_2H				
Question	Working	Answer	Mark	Notes
	$\begin{aligned} & 180-136- \\ & " 34.4 " \\ & =9.504 \end{aligned}$	3.73	5	M1 for $\frac{\sin L}{12.8}=\frac{\sin 136}{15.7}$ M1 for $L=\sin ^{-1}\left(\frac{\sin 136}{15.7} \times 12.8\right)$ or or $\sin ^{-1} 0.566 \ldots$ A1 for 34.4-34.5 M1 for $\frac{L N}{\sin \left(180-136 \sigma^{\prime} 344^{\prime}\right)}=\frac{15.7}{\sin 136}$ or $\frac{L N}{\sin \left(180-136 \sigma^{\prime} 344^{\prime}\right)}=$ $\frac{12.8}{\sin ^{\prime} 34.4^{\prime}}$ or $\left(L N^{2}=\right) 15.7^{2}+12.8^{2}-2 \times 15.7 \times 12.8 \times \cos \left(180-136-{ }^{\prime} 34.4^{\prime}\right)$ A1 for 3.73-3.74

Q8.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & D B^{2}=5.6^{2}+8.2^{2}-2 \\ & \times 5.6 \times 8.2 \cos 78 \\ & D B^{2}=79.505 \ldots \\ & D B=8.9165795 \ldots \\ & \frac{8.9165 . .}{\sin 80}=\frac{D C}{\sin 40} \\ & D C= \\ & \frac{8.9165 . . \times \sin 40}{\sin 80} \\ & =8.9165 \ldots \times 0.6572 \ldots \\ & =5.8198 \end{aligned}$	5.82	6	M1 Cosine rule: $\mathrm{DB}^{2}=5.6^{2}+8.2^{2}-2 \times 5.6 \times 8.2 \times \cos 78$ M1 $\sqrt{ } 79.505 \ldots$.. $=8.9165795$..) A1 for $\mathrm{DB}=8.90$ to 8.92 M1 $\frac{\text { " } 8.9165 . . "}{\sin 80}=\frac{D C}{\sin 40}$ M1 $\frac{\text { "8.9165.." } \times \sin 40}{\sin 80}$ (=5.8198) A1 for answer 5.80 to 5.83 If working in RAD or GRAD award method marks only. RAD: DB=13.318..., DC=-9.98.. GRAD: DB=8.2152..., DC=5.0773...

Q9.

Paper 11	1: 2 H		
Question	Working	Answer	Notes
(a)		130	P1 start to process eg draw a labelled triangle or use of sine rule $\frac{\sin Q}{8.7}=\frac{\sin 32}{5.2}$
			P1 \quad process to find of Q eg. $Q=\sin ^{-1}\left[\frac{\sin 32}{5.2} \times 8.7\right]$
			P1 process to find area of triangle $P R Q$.
			A1 22.5-22.6
(b)			C1 angle $P R Q$ is obtuse so need to find area of two triangles.

Q10.

Paper: 5MB3H_01				
Question	Working	Answer	Mark	Notes
		$\begin{aligned} & 15500 \text { to } \\ & 15600 \end{aligned}$	3	B1 for 50.5 (accept $50.4 \dot{9}$) or 227.5 (accept 227.49) or 177.5 (accept 177.49) M1 for $0.5 \times$ " 227.5 " \times " 177.5 " $\times \sin " 50.5$ " A1 for an answer in the range 15575 to 15580 from using three correct upper bounds

Q11.

Question	Working	Answer	Mark	Notes
	$\begin{aligned} & A=1 / 2 \times x \times 2 x \\ & \sin 30^{\circ} \\ & A=1 / 2 \times 2 x^{2} \times 0.5 \end{aligned}$ OR $\begin{aligned} & \text { Height }=2 x \sin 30^{\circ} \\ & =x \\ & A=\frac{x \times x}{2}=\frac{x^{2}}{2} \end{aligned}$ OR Height $=x \sin 30=$ $x / 2$ $A=1 / 2 \times 2 x \times x / 2=x^{2} / 2$	$x=\sqrt{2 A}$ shown	3	M1 $(A=) 1 / 2 \times x \times 2 x \sin 30^{\circ}$ A1 $A=x^{2} \times 0.5$ or $A=x^{2} / 2$ C1 for completion with all steps shown OR M1 height $=2 x \sin 30(=x)$ A1 $A=x^{2} \times 0.5$ or $A=x^{2} / 2$ C1 for completion with all steps shown OR M1 for height $=x \sin 30(=x / 2)$ A1 $A=x^{2} \times 0.5$ or $A=x^{2} / 2$ C1 for completion with all steps shown

Q12.

Paper 1MA1: 3H		Answer	Notes
Question	Working		
	$\begin{aligned} & A C^{2}=20^{2}+20^{2}=800 \\ & A X^{2}=10^{2}+10^{2}=200 \\ & \sqrt{200} \times \tan 55=V X \quad(=20.19 \ldots) \\ & V M^{2}=\sqrt{\prime \prime 20.19^{\prime \prime}+10^{2}} \quad(=22.54 \ldots) \\ & 4 \times \frac{1}{2} \times " 22.54 " \times 20+20^{2} \end{aligned}$	1300	Let X be centre of base, M be midpoint of $A B$ P1 process to find $A C$ or $A X$ P1 process to find $V X$ or $V A$ P1 process to find height of sloping face or angle of sloping face. P1 process to find surface area of one triangular face. A1 For $1300-1302$

